Algebra Tutorials!

 Monday 11th of December

Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Solving Quadratic Equations

## How can Factored Form help to solve a quadratic equation?

If you use factored form to express the quadratic part of a quadratic equation, then the quadratic equation will look something like:

a Â· (x - c) Â· (x - d) = 0.

If you divide both sides of this equation by the number a you will get:

(x - c) Â· (x - d) = 0.

The two x-values that satisfy this equation are the x-values x = c and x = d, which are the two numbers that appear in the parentheses of the factored form.

When you are trying to solve a quadratic equation, if you can successfully convert the quadratic part from standard form to factored form, then the solution(s) of the quadratic equation will be the two numbers x = c and x = d that appear in the parentheses of the factored form.